SMART BIN

Jagadeesh R, Aeronautical Department, KCG College of Technology,

Madhu Mathi S, Aeronautical Department, KCG College of Technology,

Muthu Kumar M, Aeronautical Department, KCG College of Technology,

Gopinath S, Aeronautical Department, KCG College of Technology

Abstract—In this paper, the idea of separating Biodegradable and non-biodegradable waste have been suggested and the technique to use Biodegradable waste for producing Biogas for cooking, to produce Electricity and the soil left after decomposing Bio wastes can be used as fertilizers in the field of Agriculture. This methodology can be used for both small scale and large scale waste separation and also to produce products. This idea will provide way for manufacturing of large number of organic fertilizers, which will promote Agriculture in a good way to grow Healthy crops and also provide way to healthy nation. Because of this Artificial fertilizers can be completely dumped.

I. OBJECTIVE

To separate Biodegradable and Non-Biodegradable waste separately. To make use of Methane gas obtained by decomposing the Biodegradable wastes in the form of Bio fuel for cooking, for producing electricity. To make fertilizers at the end of the process by decomposing the Biodegradable wastes in the soil. To produce unlimited Fertilizers for Farmers in order to grow the healthy Crops and also to avoid artificial Fertilizers.

II. PROPOSED CONCEPT

This design has been proposed in such a way that the concept and product development concept is simple and Low cost.

PROCESS 1:
PROCESS 2:

III. COMPONENTS
The components used are simple it’s been for different process for all detection methods.

a) MICROCONTROLLER
A microcontroller is a small computer on a single integrated circuit. In modern terminology, it is similar to, but less sophisticated than, a system on a chip. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.

b) ULTRASONIC SENSOR
Ultrasonic sensors measure distance by using ultrasonic waves. The sensor head emits an ultrasonic wave and receives the wave reflected back from the target. Ultrasonic Sensors measure the distance to the target by measuring the time between the emission and reception.

c) RELAY
A relay is an electrically operated switch. Many relays use an electromagnet to mechanically operate a switch, but other operating principles are also used, such as solid-state relays. Relays are used where it is necessary to control a circuit by a separate low-power signal, or where several circuits must be controlled by one signal.

d) TEMPERATURE SENSOR
A temperature sensor is a device that detects and measures hotness and coolness and converts it into an electrical signal.
e) SERVO
In control engineering a servomechanism, sometimes shortened to servo, is an automatic device that uses error-sensing negative feedback to correct the action of a mechanism. It usually includes a built-in encoder or other position feedback mechanism to ensure the output is achieving the desired effect.

f) HEATING ELEMENT
A heating element converts electrical energy into heat through the process of resistive or Joule heating. Electric current passing through the element encounters resistance, resulting in heating of the element.

IV. WORKING
There are two bins used in this technique. In the first bin, the main process is to separate Non-Biodegradable from the Biodegradable waste. At first, the Micro controller will give command to Ultrasonic sensor to sense the height of the waste. After getting desired height which is sensed by the Ultrasonic sensor, the Microcontroller will start the relay. The relay will make the heating coil to work which intern heat the wastes with the water. The relay will make the heating coil to work which intern heat the wastes with the water. After reaching 30 to 40 degree, which is the optimal temperature to make even high density plastics to float. The temperature sensor will sense and maintain the obtained temperature. In between the sensor will be working per minute, in order to remove the floating plastics.

V. APPLICATION
- This method is being used to separate Biodegradable and non-biodegradable waste.
- The bio gas produced can be used for cooking
- The bio gas can used to produce electricity
- The decomposed biodegradable waste can be used as fertilizers for Agricultural.

VI. ADVANTAGES
- The wastes can be categorized and segregated separately.
- Almost every Non-Biodegradable wastes can be separated and can be sent to another recycling process.
- The Biodegradable wastes can be converted into organic Fertilizers. The source for Electricity can be provided by the emitted Methane gas.
- There will be promotion of organic Fertilizers among artificial Fertilizers.
- More efficient.
- Reasonable cost.

VII. CONCLUSION
The wastes have been converted into useful things to the society. By segregating plastics separately, it will enable rain water penetrate into soil.

REFERENCES


